# Theory - and international experiences

Collaborative resource management and monitoring

- Why is it important?
- What do we mean with the terms?
- Examples of practice
- Examples of achievements

## Climate-driven changes in the distribution of life



Wind or Early.



# Adapting to global species redistribution requires: 'All hands on deck'

Respect, Collaboration, Exchange and Cross-weaving of indigenous, community-based and formal academic science

(Science 355:1389; 2017)

why oreant?



#### Adapting requires:

## Decision-making at the most appropriate level

Resource management that promotes local livelihoods within sustainable levels



# collaborative Management Resource Management

= Collaborative institutional arrangement among local communities and other stakeholders for managing or using resources

(Environm. Science Policy 4: 229, 2001)





# collaborative Management Resource Management

= Collaborative institutional arrangement among local communities and other stakeholders for managing or using resources

#### **Justification**

Participation → Efficiency and equity in resource management

**Precondition** Local people have their rights recognized to access and use resources



### Examples of practice

Public engagement in decision-making



## Examples of practice

#### Canada

Various co-management agreements such as Nunavut Final Agreement (Armitage et al. 2009; 2011; Dale & Armitage 2010)

#### Alaska

Co-management advisory committees (walrus, beluga, bowhead whale, seals, polar bear)

#### **Iceland**

River fish management, Arctic tern breeding colonies

#### Sweden

Water resource management

## Examples of practice

International agreements

#### **Convention on Biodiversity**

By 2020 integrate indigenous and local knowledge and practices into the management of biodiversity





= The process of routinely observing the environment that is **led and undertaken** by community members





Akunnaaq, early Sep. 2010. By Gerth Nielsen

#### The kind of skills it takes to be a hunter

#### Judicial knowledge

(knowing rules, regulations & legislation)

#### Oceanography - sea currents

(determining where and when to go)

#### Knowledge about climate change

(adapting to consequences)

#### Meteorology

(ability to foresee weather changes)

#### Planning & logistics

(flexibility to adapt to changing conditions & environment)

#### **Biology**

(knowledge of species and their migration patterns)

#### **Technical skills**

(knowing how to maintain motors and weapons)

#### Hygiene

(handling of catch)



Tengö et al. 2014; 2017

# How do reports by community members compare with professional scientists reports?

The world's largest database on species (Global Biodiversity Information Facility)



### How to increase the ability of CBM programmes to provide data that trained scientists would consider reliable

#### 1) Use triangulation

- Across communities
- Across community members
- Across methods
- 2) Increase the no of primary data providers (= community members who observe resources)
- 3) Use clear categories
- 4) Ensure skills in facilitating dialogue
- 5) Invite scientists to visit CBM programs



## Example of achievements Decision-making from monitoring



# Scale of decision-making and implementation time differ

Without involvement of local people: the monitoring may sometimes be isolated, academic exercises with limited impacts in the 'real' world

Collaborative monitoring can...

Document local resources

**Encourage local discussion** 

Shorten the time from observation to decision



#### Does not replace scientist monitoring

Helps pinpoint species and areas in need of attention

## Present all year round

